
Ansible for Windows
Getting Started

Yvo Wiskerke
Sr. Business Development Manager - Red Hat



THE WORLD IS AUTOMATING
Those who succeed in automation will win



AUTOMATION IN ENTERPRISE IT TODAY

SERVERS CLOUD NETWORK

APPS

CONTAINERS



AUTOMATION IN ENTERPRISE IT TODAY

AUTOMATED SILOS ARE

SILOS

STILL



WHAT IS ANSIBLE AUTOMATION?

Ansible Tower is an enterprise framework for 
controlling, securing and managing your Ansible 
automation with a UI and RESTful API.

Ansible is an open source community project 
sponsored by Red Hat. It’s a simple automation 
language that can perfectly describe IT 
application environments in Ansible Playbooks.



6

1900+ 
Ansible modules

31,000+ 
Stars on GitHub

500,000+ 
Downloads a month



7

CROSS PLATFORM 

Agentless support for all major OS 
variants, physical, virtual, cloud and 
network devices.

HUMAN READABLE 

Perfectly describe and document 
every aspect of your application 
environment.

PERFECT DESCRIPTION 
OF APPLICATION

Every change can be made by 
Playbooks, ensuring everyone is on 
the same page.

VERSION CONTROLLED

Playbooks are plain-text. Treat them 
like code in your existing version 
control.

DYNAMIC INVENTORIES

Capture all the servers 100% of the 
time, regardless of infrastructure, 
location, etc.

ORCHESTRATION PLAYS 
WELL WITH OTHERS 

Every change can be made by 
Playbooks, ensuring everyone is on 
the same page.

THE ANSIBLE WAY



8

SIMPLE POWERFUL AGENTLESS

App deployment

Configuration management

Workflow orchestration

Network automation

Orchestrate the app lifecycle

Human readable automation

No special coding skills needed

Tasks executed in order

Usable by every team

Get productive quickly

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

Get started immediately

More efficient & more secure

WHY ANSIBLE?



INSERT DESIGNATOR, IF NEEDED

● Build & manage dynamic inventory
● Roles-Based Access Control
● Workflows
● Ongoing Compliance
● Running Playbooks at Scale
● RESTful API



WHAT CAN I DO WITH ANSIBLE?
Automate the deployment and management of your entire IT footprint. 

Orchestration

Do this...

Firewalls

Configuration 
Management

Application 
Deployment Provisioning Continuous 

Delivery
Security and 
Compliance

On these...

Load Balancers Applications Containers Clouds

Servers Infrastructure Storage And more...Network Devices



WHY IS AUTOMATION  IMPORTANT?
Your applications and systems are more 
than just collections of configurations. 
They’re a finely tuned and ordered list of 
tasks and processes that result in your 
working application.
 
Ansible can do it all:
  • Provisioning

  • App Deployment

  • Configuration Management

  • Multi-tier Orchestration 



WHY AUTOMATE?

● We all have to do more with less

● Consistently deliver predictable results faster

● Increase number of deployments, reduce time between deployments

● Innovate faster



13

ANSIBLE’S AUTOMATION ENGINE

CMDB 

USERS

INVENTORY
HOSTS

NETWORK 
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE 
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

CMDB 

INVENTORY
HOSTS

NETWORK 
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

USERS

ANSIBLE 
PLAYBOOK

PLAYBOOKS 

• Written in YAML

• Tasks are executed sequentially

• Invokes Ansible modules

CMDB 
PUBLIC / PRIVATE

CLOUD

PLUGINS

• Gears in the engine

• Python that plugs into the 

  core engine

• Adaptability for various uses 

  & platforms

USERS

ANSIBLE 
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

HOSTS

NETWORK 
DEVICES

API

MODULES

PUBLIC / PRIVATE
CLOUD

INVENTORY

PLUGINS

USERS

ANSIBLE 
PLAYBOOK

[web]
webserver1.example.com
webserver2.example.com

[db]
dbserver1.example.com

ANSIBLE’S AUTOMATION ENGINE

CMDB 

HOSTS

NETWORK 
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

INVENTORY

CLOUD 

OpenStack, VMware, EC2, 

Rackspace, GCE, Azure, 

Spacewalk, Hanlon, Cobbler

CUSTOM CMDBUSERS

ANSIBLE 
PLAYBOOK

ANSIBLE’S AUTOMATION ENGINE

HOSTS

NETWORK 
DEVICES

PLUGINS

API

MODULES

PUBLIC / PRIVATE
CLOUD

INVENTORY

CMDB 
PUBLIC / PRIVATE

CLOUD

HOW ANSIBLE WORKS



INSERT DESIGNATOR, IF NEEDED14

- hosts: windows

  vars:
    network_name_servers:
      - 8.8.8.8
      - 8.8.4.4

  tasks:
    - name: Configure the dns for all interfaces

 win_dns_client:
   adapter_names: "*"
   Ipv4_addresses: "{{ network_name_servers }}"

Inventory

Variables

The task to perform

ANATOMY OF A PLAYBOOK



15

USE 
CASES

USERS

ANSIBLE
PYTHON CODEBASE

OPEN SOURCE MODULE LIBRARY

PLUGINS

CLOUD
AWS,
GOOGLE CLOUD,
AZURE …

INFRASTRUCTURE
LINUX,
WINDOWS,
UNIX …

NETWORKS
ARISTA, 
CISCO, 
JUNIPER …

CONTAINERS
DOCKER, 
LXC …

SERVICES
DATABASES, 
LOGGING,
SOURCE CONTROL 
MANAGEMENT…

TRANSPORT

SSH, WINRM, ETC.  

AUTOMATE
YOUR 

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE TOWER API

ROLE-BASED
ACCESS CONTROL

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

CONFIGURATION
MANAGEMENT

APP 
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING



INSERT DESIGNATOR, IF NEEDED

OPERATIONS

DEVELOPMENT SECURITY

BUSINESS
(ARCHITECTS)

Communicate with Playbooks



WHY ANSIBLE FOR WINDOWS?

● Common objections

a. I already use Powershell

b. I already have System Center

c. I use other tools to automate my windows estate



18

USE 
CASES

USERS

ANSIBLE
PYTHON CODEBASE

OPEN SOURCE MODULE LIBRARY

PLUGINS

CLOUD
AWS,
GOOGLE CLOUD,
AZURE …

INFRASTRUCTURE
LINUX,
WINDOWS,
UNIX …

NETWORKS
ARISTA, 
CISCO, 
JUNIPER …

CONTAINERS
DOCKER, 
LXC …

SERVICES
DATABASES, 
LOGGING,
SOURCE CONTROL 
MANAGEMENT…

TRANSPORT

SSH, WINRM, ETC.  

AUTOMATE
YOUR 

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE TOWER API

ROLE-BASED
ACCESS CONTROL

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

CONFIGURATION
MANAGEMENT

APP 
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING



INFRASTRUCTURE AGNOSTIC USE CASES

● Security & OS Hardening

● Updates and Patches

● User management

● Configuration management

● Software deployment



NOT SSH

● WinRM (HTTP-based remote shell protocol)

● Non-interactive logon

● Different connection plugin

● Microsoft OpenSSH?



POWERSHELL

● All Windows modules in Ansible written in Powershell

● Unlike Python, “just there” on modern Windows

● We can use .NET

● Powershell 3+, Windows 7/Server 2008+

● Access to the DSC universe via win_dsc



WINDOWS HOST REQUIREMENTS

● Supported desktop OSs include Windows 7, 8.1, and 10

● Supported server OSs are Windows Server 2008, 2008 R2, 2012, 2012 R2, 

and 2016.

● Ansible requires PowerShell 3.0 or newer and at least .NET 4.0 to be 

installed on the Windows host.

● A WinRM listener should be created and activated. 
For more details: https://docs.ansible.com/ansible/latest/user_guide/windows_setup.html 

https://docs.ansible.com/ansible/latest/user_guide/windows_setup.html


GETTING ANSIBLE READY FOR WINDOWS

● Install ansible and kerberos as per documentation

● Configure the Kerberos by setting the default realm and adding your domain 

controller information in the linux kerberos configuration file.

● Configure the inventory file with client machine info

● Ready to run playbooks



GETTING READY FOR WINDOWS

Active Directory
Services

WinRM

Local Authentication



GETTING READY FOR WINDOWS

Active Directory
Services

WinRM

CredSSP / 

Kerberos
CredSSP / 

Kerberos



AUTHENTICATION OPTIONS
Option Local 

Accounts
Active Directory 

Accounts
Credential 
Delegation

HTTP 
Encryption

Basic Yes No No No

Certificate Yes No No No

Kerberos No Yes Yes Yes

NTLM Yes Yes No Yes

CredSSP Yes Yes Yes Yes



USE CASE - INSTALLING SOFTWARE

1. Using the win_chocolatey module. This sources the program data from the 

default public Chocolatey repository. Internal repositories can be used 

instead by setting the source option.

2. Using the win_package module. This installs software using an MSI or .exe 

installer from a local/network path or URL.

3. Using the win_command or win_shell module to run an installer manually.



USE CASE - INSTALLING SOFTWARE

# install/uninstall with chocolatey
- name: ensure 7-Zip is installed via Chocolatey
  win_chocolatey:
    name: 7zip
    state: present

- name: ensure 7-Zip is not installed via 
Chocolatey
  win_chocolatey:
    name: 7zip
    state: absent

# install/uninstall with win_package
- name: download the 7-Zip package
  win_get_url:
    url: http://www.7-zip.org/a/7z1701-x64.msi
    dest: C:\temp\7z.msi

- name: ensure 7-Zip is installed via win_package
  win_package:
    path: C:\temp\7z.msi
    state: present

- name: ensure 7-Zip is not installed via 
win_package
  win_package:
    path: C:\temp\7z.msi
    state: absent



USE CASE - SETTING UP USERS/GROUPS

1. The modules win_user, win_group and win_group_membership manage 

Windows users, groups and group memberships locally.

2. The modules win_domain_user and win_domain_group manages users and 

groups in a domain. 



USE CASE - SETTING UP USERS/GROUPS

- name: create local group to contain new users
  win_group:
    name: LocalGroup
    description: Allow access to C:\Development folder

- name: create local user
  win_user:
    name: '{{item.name}}'
    password: '{{item.password}}'
    groups: LocalGroup
    update_password: no
    password_never_expired: yes
  with_items:
  - name: User1
    password: Password1
  - name: User2
    password: Password2

- name: ensure each account is created
  win_domain_user:
    name: '{{item.name}}'
    upn: '{{item.name}}@MY.DOMAIN.COM'
    password: '{{item.password}}'
    password_never_expires: no
    groups:
    - Test User
    - Application
    company: Ansible
    update_password: on_create
  with_items:
  - name: Test User
    password: Password
  - name: Admin User
    password: SuperSecretPass01
  - name: Dev User
    password: '@fvr3IbFBujSRh!3hBg%wgFucD8^x8W5'



USE CASE - WINDOWS UPDATES

win_updates is used to install multiple updates by 
category
Basic, synchronous updates that uses configured 
source (Windows update/WSUS)

win_hotfix can be used to install a single update or 
hotfix file that has been downloaded locally.

The win_hotfix module has a requirement that the DISM 
PowerShell cmdlets are present (W2K12+)



USE CASE - WINDOWS UPDATES
- name: Run Updates then wait 7 mins before reboot
    win_updates:
      category_names:
        - Application
        - CriticalUpdates
        - SecurityUpdates
      whitelist:
        - KB4093120
    reboot: yes
    reboot_timeout: 420

- name: Run Updates, except KB4056892(endless loop)
      win_updates:
      category_names:
        - CriticalUpdates
        - SecurityUpdates
      blacklist:
        - KB4056892

- name: download KB3172729 for Server 2012 R2
  win_get_url:
    url: 
http://download.windowsupdate.com/d/msdownload/update/s
oftware/secu/2016/07/windows8.1-kb3172729-x64_e8003822a
7ef4705cbb65623b72fd3cec73fe222.msu
    dest: C:\temp\KB3172729.msu

- name: install hotfix
  win_hotfix:
    hotfix_kb: KB3172729
    source: C:\temp\KB3172729.msu
    state: present
  register: hotfix_result

- name: reboot host if required
  win_reboot:
  when: hotfix_result.reboot_required



Reboots, oh the reboots

● win_reboot action makes managed reboots trivial

● wait_for_connection is just the second half



USE CASE - DESIRED STATE CONFIGURATION

Desired State Configuration, or DSC, is a tool built into PowerShell that can be 
used to define a Windows host setup through code. 

Since Ansible 2.4, the win_dsc module has been added and can be used to 
leverage existing DSC resources when interacting with a Windows host.

For DSC windows host must have PowerShell v5.0 or newer installed. 

All supported hosts, except for Windows Server 2008 (non R2) can be upgraded 
to PowerShell v5.



USE CASE - DESIRED STATE CONFIGURATION

- name: use win_dsc module with the Registry 
DSC resource
  win_dsc:
    resource_name: Registry
    Ensure: Present
    Key: 
HKEY_LOCAL_MACHINE\SOFTWARE\ExampleKey
    ValueName: TestValue
    ValueData: TestData

- name: use win_dsc with 
PsDscRunAsCredential to run as a different 
user
  win_dsc:
    resource_name: Registry
    Ensure: Present
    Key: HKEY_CURRENT_USER\ExampleKey
    ValueName: TestValue
    ValueData: TestData
    PsDscRunAsCredential_username: 
'{{ansible_user}}'
    PsDscRunAsCredential_password: 
'{{ansible_password}}'
  no_log: true



USE CASE - SECURITY

● Define firewall rules in one variable file

● Apply to many different systems

{|}
Playbook



INSERT DESIGNATOR, IF NEEDED37

fw_rules:
    - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 32400, proto: tcp, action: allow, comment: app1 }
    - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 1900, proto: udp, action: allow, comment: app2  }
    - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 3005, proto: tcp, action: allow, comment: app3  }
    - { rule: "public", src_ip: 0.0.0.0/0, dst_ip: 192.133.160.23/32, dst_port: 5353, proto: udp, action: allow, comment: app4  }

 - name: Insert ASA ACL
      asa_config:
        lines:
          - "access-list {{ item.rule }} extended {{ item.action }}{{ item.proto }}{{ item.src_ip | ipaddr('network') }}{{ item.src_ip 
| ipaddr('network') }}{{ item.dst_ip | ipaddr('network') }}{{ item.dst_ip | ipaddr('network') }} eq {{ item.dst_port }}"
      with_items: "{{ fw_rules }}"

- name: Create security rules
  win_firewall_rule:
    name: “{{ item.comment }}”
    remoteport: “{{ item.dst_port }}”
    remoteip: “{{ item.dst_ip }}”
    action: “{{ item.action }}”
    direction: out
    protocol: “{{ item.proto }}”
    state: present
    enabled: yes
  with_items: “{{ fw_rules }}”

Policy Abstraction

 - name: Create security rules
      panos_security_rule:
        operation: "{{ item.action | default (omit) }}"
        rule_name: "{{ item.comment | default (omit) }}"
        service: "{{ item.dst_port | default (omit) }}"
        description: "{{ item.description | default (omit) }}"
        source_zone: "{{ item.rule | default (omit) }}"
        destination_zone: "{{ item.destination_zone | default (omit) }}"
        action: "{{ item.action | default ('allow') }}"
        commit: "{{ item.comment | default (omit) }}"



LOTS MORE WINDOWS MODULES
win_acl
win_acl_inheritance
win_audit_policy_system
win_audit_rule
win_certificate_store
win_chocolatey
win_command
win_copy
win_defrag
win_disk_facts
win_disk_image
win_dns_client
win_domain
win_domain_computer
win_domain_controller
win_domain_group
win_domain_membership
win_domain_user
win_dotnet_ngen

win_dsc
win_environment
win_eventlog
win_eventlog_entry
win_feature
win_file
win_file_version
win_find
win_firewall
win_firewall_rule
win_get_url
win_group
win_group_membership
win_hostname
win_hotfix
win_iis_virtualdirectory
win_iis_webapplication
win_iis_webapppool
win_iis_webbinding

win_iis_website
win_lineinfile
win_mapped_drive
win_msg
win_msi (D)
win_nssm
win_owner
win_package
win_pagefile
win_path
win_pester
win_ping
win_power_plan
win_product_facts
win_psexec
win_psmodule
win_rabbitmq_plugin
win_reboot
win_reg_stat

win_regedit
win_region
win_regmerge
win_robocopy
win_route
win_say
win_scheduled_task
win_scheduled_task_stat
win_security_policy
win_service
win_share
win_shell
win_shortcut
win_stat
win_tempfile
win_template
win_timezone
win_toast
win_unzip

win_updates
win_uri
win_user
win_user_right
win_wait_for
win_wakeonlan
win_webpicmd
win_whoami

https://docs.ansible.com/ansible/latest/modules/list_of_windows_modules.html



ANSIBLE TRAINING & HANDS ON LABS

● Recommended training

● 29 November 2018 - Hands On Lab Ansible & Ansible Tower



THANK YOU



plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews


